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SECTION I

INTRODUCTION

PURPOSE AND SCOPE

Because of the elastic properties of most acoustic targets,
the temporal echoes and frequency characteristics of even the simplest
targets are distinctive but confusingly complex. These same effects can
influence acoustic images as well. Any useful target classification
algorithm, via temporal or image processing, should be based upon mean-
ingful target scattering characteristics. Hence, the frequency response,
or differential scattering cross-section, of targets of interest need to
be measured and understood so that it may guide pattern recognition
procedures to those frequency domains which present the most consistent
and distinctive features. Once these features have been identified, a
waveform may be designed to maximize the desired response.

The purpose of this report is to ptesent both mathematical and
heuristic descriptions of acoustic scattering which will be useful in
the interpretation of experimental scattering data from minelike objects
by providing physical insight tooard understanding their origin and
significance. Subsequent reports will qeal with the results of experi-
mental measurements and their interpretation.

This report is organized into nine sections. In addition to these
introductory remarks, Section I contains a brief description of previous
work in acoustic scattering and the phenomenology involved. Section II
is a derivation of the general scattering theory from the wave equation
to the general Kirchhoff diffraction equation. This derivation is
included for continuity ind completeness. Section III is concerned with
the development of an original empirical scattering model based upon a
basis set of plane waves and target surface distribution coefficients.
Section IV deals with a method of presenting and interpreting scattering
data in terms of real-space and wave (or Fourier)-space functions.
Section V presents a derivation of a first level approximation to scat-
tering from a rigid, finite cylinder from arbitrary aspect angle, using
the empirical model described in Section III. Section VI contains
graphical displays of the scattering function derived in Section V as
well as comments on the characteristics of the plotted function. Sec-
tion VII considers impedance boundary conditions for elastic targets.
Reflection coefficients for the finite cylinder are derived in terms of
the wave-space and real-space parameters of the empirical model. Sec-
tion VIII contains plots of the finite, impedance cylinder (aluminum and
brass) in water as well as a comparison of that for an aluminum cylinder
in air with that of the rigid cylinder (Section VI). Section IX concludes
with a summary of the empirical model and its utility.
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PREVIOUS WORK AND PHENOMENOLOGY

Acoustic scattering measurements for simple targets have been
published in the form of time series (temporal) signals for short pulses

i

or as power spectra (frequency domain) of the scattered signal.
2'3'4'5

The backscattering experimental configuration has been the principal
method. Spheres and "infinite" cylinders, from beam aspect, have been
the principal targets because their symmetry permits a minimum number of
measurements because of the absence of aspect dependence. Some early
work1'6 shows target directivity patterns in the form of polar plots at
discrete frequencies. In thes, investigations, the acoustic projector
and target were held fixed while the receiving hydrophone was rotated

about the axis of symmetry of the target. Hence these results show a
variation of target response due to changing the experimental geometry
(bistatic angle) but not because of the target's geometry or aspect

dependence. Little work has been reported which combines the variation
of the target response with respect to frequency and target aspect for
either backscattering or bistatic angle experimental configurations.

Dunsiger7 has examined the aspect dependence of a variety of simple
shapes using short pulses at high frequency,- where frequency dependence
of the target response was assumed to be unimportant. The resulting

lBarnard, G. R. and McKinney, C. M., "Scattering of Acoustic Energy by
Solid and Air Filled Cylinders in Water," J. Acoustic. Soc. Am. 33,
226-238 (1961).

2Hickling, R., "Analysis of Echoes from a Solid Elastic Sphere in Water,"
J. Acoust. Soc. Am. 34, 1582-1592 (1962).

3Diercks, K. J. and Hickling, R., "Echoes from Hollow Aluminum Spheres in
Water," J. Acoust. Soc. Am. 41, 380-393 (1966).

4Shirley, D. J. and Diercks, K. J., "Analysis of the Frequency Response of
Simple Geometric Targets," ARL-TM-69-21, The University of Texas at Austin,
45 pp. (1970).

5Neubauer, W. G., Vogt, R. H., and Dragonette, L. R., "Acoustic Reflection
from Elastic Spheres. I. Steady-State Signals," J. Acoust. Soc. Am. 55,
1123-1129 (1974).

6Faran, J. J., "Sound Scattering by Solid Cylinders and Spheres," J. Acoust.
Soc. Am. 23, 405-418 (1951).

7Dunsiger, A. D., "High-Frequency Acoustic Echoes Received From Simple
Geometric Shapes with Possible Applications to Target Recognition,"
J. Sound Vib. 13, 323-345 (1970).

2
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target echoes were a sequence of pulses whose spacing corresponded to
the distance between edges and corners of the target as viewed from the
projector's line of sight.

Neubauer and Dragonette8 have investigated the nature of the wave-
field scattered from a cylinder at broadside incidence by means of
Schlieren photography. Their work has contributed significantly to our
understanding of the complex interaction, at the surface of the target,
between compressional waves in the fluid medium and compressional and
shear waves in the solid target. Flax 9 has shown that, because of these
non-rigid impedance conditions, the responses of elastic spheres and
cylinders do not approach a limiting value at high frequencies as pre-
dicted by a physical optics approximation for the scattering.

Even a casual familiarity with the work cited above suggests that
there is a need for simultaneous representation of impedance effects as
well as aspect and frequency dependence of a target's response. Further-
more, a formalism which relates boundary impedance, aspect dependence
and frequency dependence with experimental geometry (e.g., bistatic
angle) would be useful in interpreting previous and future measurements.
In the author's opinion, this formalism need not be mathematically pre-
cise so long as it is illuminating, versatile and capable of numerical
calculation. It is in this vein that the following work is presented.

I

IA

tNeubauer, W. G. and Dragonette, L. R., "Observation of Waves Radiated

from Circular Cylinders Caused by an Incident Pulse," J. Acoust. Soc.
Am. 48, 1135-1149 (1970).

9Flax, L., "High ka Scattering-of Elastic Cylinders and Spheres," J. Acoust.

Soc. Am. 62, 1502-1503 (1977).

3
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SECTION II

GENERAL SCATTERING THEORY

Assume that a target, whose surface, A1 , is finite and closed, is

immersed in an infinite, homogeneous, isotropic, fluid medium. An

acoustic source, P, produces a compressional wave in the fluid, acd a

detector, D, senses acoustic waves in the medium. The source-target-

detector geometry is shown in Figure 1. An arbitrary origin point, 0,

has beer. chosen, so that a representative point, S, on the target's

surface is a distance r" from the origin. The detector, D, is located

by r from the origin point. A pseudo-origin, T, in the interior of the

target is also shown.

All transmitted and reflected acoustic waves in the fluid medium

are governed by the wave equation: H

a2~s(rt)2

(r,t)l/c2  at' = - 4p(r,t) (1)

where p(r,t) is the acoustic source distribution, and Y(r,t) is the

acoustic pressure wave. We wish to know the form of P(r,t) at an obser-

vation point, r, after including the appropriate scattering effect of

the target. We may proceed to the solution by the method of Green's

function. Within this approach, we may assume an impulse source and

proceed to solve for the time dependence of 'P(r,t) directly1 0 , or we may

assume a harmonic time dependence and solve for the implicit (and equiva-

lent) frequency dependence via the Helmholtz equation (pp 803-811,

Reference 10). We have selected the latter approach.

10Morse, P. M. and Feshbach, H., Methods of Theoretical Physics, McGraw-
Hill Book Company, New York, pp. 834-848 (1953).

4
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The time harmonic assumption is:

Y( It) = Y(I)e i wt (2)

Since the scattering process is linear for infinitesimal amplitude

signals, we may generate the time series for any transmitted wave shape

by Fourier analysis once Y(r) has been determined.

q(r,t) = s_ T(w) Y(r)eiWtdw (3)

where T(w) is the Fourier transform of the transmitted signal. With

this option available, we now return to the wave equation.

Assume a harmonic source density for p(r,t) similar to equation

(2). The wave equation then may be transformed from equation (1) to:

V2 P(j ) + k2y(') = -4np( ) (4)

where the time dependence has been eliminated. Note that k w/c where

"e" is the speed of the acoustic wave in the fluid medium. Equation (4)

is the inhomogeneous Helmholtz equation. By definition, a Green's

function satisfies the Helmholtz equation for a unit point source at a

location r". Thus,

I4 =G4~r' -4Tc6(r-r)(5
V2G('r,r") + kG(,)=-4t&~) (5)

where 6(r-r") is the Dirac delta- function and G(r,r") is the Green's

function relating the field at the point r to the source at the point

r.

6
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If equation (4) is multiplied by G(r,r") and equation (5) is multi-

plied by 'Y(r") and the difference taken, the result is:

G~rr") Y~")- Y~(rt)V2G(r,rIt)

r - rpr](6)

4 4
Note that the arguments in equation (4) were changed from r to r" before

multiplication. Equation (6) is quite general and applies for any points

r and r in a common volume. We now enclose the volume containing all

the source and field points of interest by two surfaces A1 and A2 as

shown in Figure 1. Surface AI is the target surface while surface A2 is

at a large but arbitrary distance from all sources, targets, and field

points of interest. Equation (6) may then be integrated over the volume

"V" bounded by A and A2 .

1 4  2

4n f [G(r r)I~~

= l(r) - f G(r, ")p(r")dV(r"). (7)
V

Note that the integral property of the Dirac delta function has been

used to produce T(4) on the right hand side (RHS) of equation (7).

The volume integral on the left hand side (LHS) of equation (7) can be

converted to a surface integral via Green's Theorem. Thus,

- [G(,")(") - ( ) G")

A1

A2

= P(r) - f G(r,r")p( ")dV(r") (8)
V

7
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where d,(r") and d2(r") are shown in Figure 1. The contribution of

the surface integral over A2 can be made vanishingly small. Various

authors1 1 ' 12 present different arguments in this regard, but none is

mathematically precise. We simply shall state that the contribution

from surfaces other than the target can'be made vanishingly small by

careful selection of the experimental conditions. When this can not be

arranged, e.g., some real world operational situations, the result is a

detectable contribution from A2 known as simple reverberation. For the

purposes of this description, we ignore reverberation so that equation (8)

becomes:

4-- f  [G(1,1") Y(I") - Y( r") G( r, ")].dXI ( rII)
A1

= f G(r, r)p(r")dV(r") . (9)
V

The volume integral on the RHS of equation (9) can be identified by
assuming the target is absent. Hence, the integral over A1 is zero and:

()= 5G(rr )P(r")dV(") . (10)

The equation simply states that the wave detected at r originates solely

from the acoustic sources at r". Hence, the integral on the RIS of

equation (10) is the incident wave. Equation (9) may be rewritten in

terms of the incident wave, 'inc (r), and the scattered wave, is(r)

Y(,r) = in(r) + Ys(-r) (i
inc s

where

Win(P ) = f G(rr )p(r )dV(r ) (12)
V

"Marion, J. B., Classical Electromagnetic Radiation, Academic Press,

New York, 1965.
12Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, Inc.,
New York, 1962.

8
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and

s (r A1

In order to agree with the normal convention for outward pointing sur-

face normals, the direction of dX (r") will be reversed (accompanied by

the appropriate sign change) so that it points outward from the target.

For purposes of simplification, the subscripts will be dropped since it

will be understood henceforth that we are describing the scattered

wavefield, i 5(4 (), arising from the interaction of the incident wave with

the target surface only. Hence,

Y(I)=r I r ~~") -G(r))(")'r(" r. (14)

general and should not be confused with the "Kirchhoff approximation"

which is concerned with an approximate solution to equation (14) involving

a number of assumptions.
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SECTION III

EMPIRICAL SCATTERING MODEL

If the value of the wavefield and its gradient were known at each

point of the target's surface, then equation (14) could be used with a

spherical wave Green's function to solve for the scattered wavefield at

any desired point r. Since we do not know the value of the wavefield,

let us assume that it can be represented as a linear combination of

component waves; e.g., the incident wave, diffracted waves, and multiple

scattered waves.

Let,

N

Y(r") = X (" (15)

j.l

where the a (r") are complex distribution functions specifying the

amplitude and phase of each of the "j" components at each point on the

target's surface.

Now,

N

j=l j

Substituting equations (15) and (16) into equation (14) yields:

N i ~ ~~~ ">tt ->It) -I _ ,, ,
r 4n fA a(ro tGrr Yr
j=l

• - "-- -tt -"tt "+ t

G(r,r )r( ) U1r )]dl(-"') (17)
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Note, however, that each a.( )" is a surface function, varying only
3 4

parallel to the surface at any point. Hence, _.(") is parallel to the3

surface and perpendicular everywhere to dx(r"). Thus,

Ci")'d(r") =0 for all "j" (18)

Therefore, we rewrite equation (17) as:

II

Y(I)= I Y.() (19)
j=l j

where

>j() =t)-~ r ) rj[j )G )(,"~("ld(" (20)
A

The task which remains is to postulate the nature and origin of the

component waves,, Y. (r"), and the distribution functions, uj (r"), through

physical reasoning and/or experimental measurements. As each component

is added to the summation, its contribution can be compared to experi-

mental measurements to determine its significance.

Before proceeding further, we wish to add an additional simplifica-

tion. We will assume that the target is in the farfield of both the

source, P, and the detector at D in Figure 1.

Now,

i-ik

e, -e i k j r - r " j _ 1erSDI
G(r,r ) - e . (21)

rr"i IrSDIA' I,

Using the farfield approximation and noting that r r r (seerSD = TD-'se

Figure 1), then

_ 2  TD . '

F- (e "rTD (k 2 •'
G4r,r") 'G(r') ( -) e (22)

TD
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whererT

k is a wave vector parallel to r as shown in Figure 1. Care

now must be exercised with respect to the gradient operators in equation

(20). The gradient, G(Ir,l"), is with respect to r" while VG(I') is

with respect to r'. Noting the reversal of signs of r" and r' in equations

(21) and (22), we see that:

UG*r,r") - GCI') (23)

We also will assume

ir"-r. I -iklrjs
rj(") = e _ e (24)

r "i Ir-jS

and use the farfield approximation

-i3 j -ik.r '

j.r)F 'I(r')= (e j ) e (25)rJT

where k. is a wave vector from the point "j" to the target origin point

"T" parallel to- the vector r jT. In Figurej, this is illustrated for
4 4nd

the incident wave from the point "P" where n k I  rT rpT.
13 jT PT

Noting the similarity in sign for r" in equation (24) and r' in

equation (25), we see that

*y( r (26)

Now from equations (25) and (22),

2y ((-'r) =-i. Y r) (27)

and

=G(I') ik2G(r ) (28)

12
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Substituting equations (22), (25), (27), and (28) into equation (20)
yields:

j ( ) = -i [-ik(rTD+r.T) "('
(r rj ' )e-j ]• )

4n fA r(r) TDrjT 2 (29)

Let us define k2j = k2 J ad dA(Ir') = ndA(r') where n is an outward
pointing unit normal.

Then,

-ik~l e-k~TDrjT) k2..n ik 2''
[2) (e 2j

= 7trflr~l fa.~ k n k~ 'dA(~')4n rTDrjT A j  
()Ik2  (3

The factor in brackets contains the experimental information regarding

the distances from the incident wave source "j" to the target origin and

from the target origin to the point of observation "D". The integral,

on the other hand, appears characteristic of the target and its relative

orientation with respect to source and detector directions.

Before examining the integral more closely, the farfield assumption

merits some discussion. For sources external to the target, the

farfield assumption is not very restrictive. For waves which may arise

from multiple reflections in or on the target, this assumption appears

invalid in principle. However, because we are at liberty to adjust the

a.(r') distribution functions in amplitude and phase, we have sacrificed

no generality in principle. We have made no real assumption and hence

produced no apparent simplification. The simplification is in form only

as manifested by the form- of the integral in equation (30).

Let us define

13
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FA(t 2 j) = f {a.( ') " (r 2----)j e 2 ' dA(1') (31)

where FA( 2j) is the structure factor of target "A". Note that the

structure factor and the factor inside the braces of the integral are a

Fourier transform pair. The factor in braces may be called the "j"th

component of the target characteristic function. Because of the Fourier

relationship, we may construct a wave space for FA( 2) which is conju-
A2j

gate to the real space which is the domain of the characteristic function.

This concept originated over 50 years ago in x-ray diffraction1 3'14 and

has been discussed more recently by Lewis15 in connection with physical

optics inverse diffraction. The Ewald construction, which relates the

incident wave vector = and the scattered wave vector to the

argument 21 of FA(k2 1), has been discussed briefly'6 but will be

included for completeness in the description of wave space in the next

section.

13Ewald, P. P., "Zur Theorie der Interferenzen der Rontgenstrahlen in

Kristallen," Physik. Z. 14, 465 (1913).
14Pepinsky, R. and Vand, V., "Crystallography and X-Ray Diffraction,"

Handbook of Physics, E. V. Condon and H. Odishaw (eds.), McGraw-Hill
Book Company, Inc., New York, pp. 8-1 to 8-23 (1958).

15Lewis, R. M., "Physical Optics Inverse Diffraction," IEEE Transactions

on Antennas and Propagation 17, 308-314 (1969).

16Nelander, J. C., "Modeling Acoustic Scattering from Elastic Cylinders,"
NCSC Technical Note 477, March 1977.
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SECTION IV

REAL SPACE - WAVE SPACE RELATIONSHIPS

BASIS VECTORS

In order to simplify the discussion which follows, let us consider

the case for j = 1 and drop the subscripts and superscripts from equation

(31). Thus, 4 44
Ai

r!

F() [C) ] e' dA(-) (32)

where 21 k2-k 1

A real space coordinate system may be defined with basis vectors

al, a2 and a3 so that:

4 4 4 4
r xa + ya + za (33)

1 ~2 3

A wave space coordinate system, conjugate to the real space system,

may be constructed using the following relations:

4 4
a x a

4 n (34)
a a x an

and

a m (35)

where k, m, n 1, 2, 3 in cyclic combination and 6 km is the Kronecker

delta. Thus,

k x 2 + kb 2 + kz 3  (36)

15



NCSC TH-275-79

and

'r kxx + kyy + kz z (37)

The basis vectors in either wave or reel space need not be orthonorma1 14

and usually are not when symmetry conditions are more important than the

simplification produced by orthonormality. For our purposes, we shall

assume orthonormality.

The conjugate relationship between a real space characteristic

function and a wave space structure factor is illustrated in Fi,;ure 2.

The Fourier relationship between the two, equation (32), ensures that

complete knowledge of one is equivalent to complete knowledge of the

other. Equation (30) indicates that we can gain knowledge about the

structure factor (and, hence, the target characteristic function) by

a82

2

Ij

31* b

16 i1

z 

Z
Real Space X Wave Spacek

A~ A

Characteristic Function knStructure Factor F,

I-ki

t FIGURE 2. REAL SPACE -WAVE SPACE RELATIONSHIP

1ibid
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measuring the acoustic wavefield scattered by a target. Several impor-

tant points warrant further discussion. For example: (1) how is the

characteristic function related to such familiar target parameters as

shape, size, and orientation? (2) what parts of the structure factor

can be measured in a given source-target-detector geometry utilizing a

specific transmitted waveform? (3) is the structure factor, and hence

target characteristic function, unique; i.e., independent of source-

target-detector geometry? (4) is there a minimal set of measurements

which can be made which will identify a given class of targets with a

high probability of success? The answer to the fourth question can be

attempted only after completing a modeling and measurement effort.

Information which will be useful in answering the other questions is

provided here.

EWALD CONSTRUCTION

The Ewald construction 13 can be used to relate experimental param-

eters to the range of F(d) values which- are observable by that experiment.

Assume that the incident plane wave is in the direction kI. In wave

space, a sphere of radius = 2n/X can be drawn such that its diameter,

along Lhe k direction, passes through the origin of wave space coordinates

so that the sphere is tangent to the origin. The scattered wave vector,

is drawn from the center of this sphere in the scattered wave direction.

The resulting constructon is shown in Figure 3(A). Note that the vector

Sk 2 -kI has its terminus on the sphere regardless of the direction of

k2. Hence, for a given target orientation with respect to kl, only
those values of F(1 ) lying on the surface of the sphere are observable

regardless of the position of the detector. If a transmitted signal has
:ia finite bandwidth (rather than monochromatic), then two spheres with

. radii Ii~lI(max) and jilI(min) may be drawn as shown in Figure 3(B). The

high frequency limit of the incident wave, I lI(max), defines the larger

sphere while the low frequency limit, I1 1(min), specifies the smaller

13ibid

17
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Backscattering

K K

K 2

(A) Single Frequency (B) Broadband

FIGURE 3. EWALD CONSTRUCTION

sphere. Observable values of F( ) are contained in the volume inside

the larger sphere but outside the smaller sphere. The line of F( )

values which can be observed with a broadband incident wave and a back-

scattering configuration, i.e., 41= k, is shown in Figure 3(B). With

the help of Figure 3(B) and a little imagination, one can see that the

same F(t) value can be observed by more than one experimental configura-

tion. But these values will occur for different frequencies. It should

be emphasized that these would be the same F(k) values, not just equal

F(6) values. This occurs because of the multitude of ways that the same

vetr can be constructed from different kI and k2 vectors. Note that

1 21

S 2-kl and that tk, not E1 ,determines the frequency at which
the F(t) value will be observed.

18
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Although the above relationships are literally true for diffraction

where equation (32) represents the total structure factor, the relation-
ships for acoustic scattering, where multiple-scattered waves may be of

considerable significance, are bound to be more complex. Suffice it to

say that caution should be exercised when comparing backscattering

measurements to bistatic measurements for the same target. Some polar

plots, such as those by Barnard and McKinney', which display the scatter-

ing cross section, Jik2"JF(k)J2, where the projector and target are

stationary while the detector is moved in a circle around the target,

are variable bistatic angle measurements. The F() values so measured

would fall on a circle on the surface of a single sphere such as that

shown in Figure 3A. If the same target were examined by backscattering

measurements, using the same frequency, the series of F( ) values so

measured would trace out a ciecle of radius 21 iwhose center is the

origin of the wave space coordinate system rather than the center of the

Ewald sphere in Figure 3(A). Whether or not there exists an operator

such that:

R [( (38)
Rop bistatic )backscattering

for acoustic scattering is not known. It is the author's opinion that a

thorough understanding of R is equivalent to a thorough understanding
op

of acoustic scattering.

INCLINATION FACTOR

One final point is worth amplification. The factor,

in equation (32) is simply a variant of the Stokes ir "lination factor of

physical optics. Consider the reflection of an incident wave k from a

19i
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planar surface, whose unit normal is , into the specular direction s
4 4

as shown in Figure 4. Since k1  and it is easy to see

that k = is parallel to fi and hence the inclination factor is
maximum; i.e.,

n .(39)

For directions other than specular, i.e., k2 # s the inclination

factor specifies the appropriate weight for the reflectivity of that

point into the direction specified by k2 . The inclination factor is
non-negative and is minimum when k is parallel to the surface and t is

n t1 2

parallel or anti-parallel to kI . When applying the inclination factor,

one need not be concerned with deviations from the specular direction

but only with the relationship between and i.

1,

't1

(Text Continued on Page 22)
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.k

ki

FIGURE 4. INCLINATION FACTOR RELATIONSHIPS
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SECTION V

RIGID CYLINDER SCATTERING - FIRST LEVEL APPROXIMATION

GENERAL APPROACH

In order to illustrate the utility of the empirical model

derived in Secton III, let us consider scattering from a rigid, finite

cylinder at an arbitrary orientation or aspect angle. Objects with

edges, such as the finite cylinder, pose particularly difficult problems

in scattering theory because: (1) the edges produce multiple scattering

effects, and (2) the edges are the loci of discontinuities in geometry

and hence make integration of wavefields across these areas difficult.

A simple scattering model by Freedman17 cites these discontinuities

as the principle source of scattering. Freedman's image point model of

acoustic scattering is a scalar model in which the target's surface is

viewed from a common source-detector position (backscattering). Dunsiger7

has noted that the integral of the image point model is difficult to

evaluate because of discontinuities in the integrand. These discontinu-

ities are the image points. Although the structure factor for our

empirical model given in equation (31) is similar to Freedman's integral,a

judicious choice of integration procedure can avoid mathematical difficulties.

Note also that equation (31) is a vector rather than scalar representation.

The integration now will be illustrated for the rigid, right circular

cylinder shown in Figure 5.

The radius of the cylinder is "a," and its length is "L." The

cylinder axis is aligned parallel to the real space z-axis. We divide

the surface of the cylinder into two parts: SI, the end disc, and S

17Freedman, A., "A Mechanism of Acoustic Echo Formation," Acustica 12,
10-21 (1962).
7 ibid (Text Continued on Page 24)
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Y

L S

IN

z x

FIGURE 5. GEOMETRY FOR SCATTERING FROM A RIGID,
RIGHT CIRCULAR CYLINDER
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the curved surface. We will consider only the first level approxi-

mation; i.e., only the incident wave from the source is considered and

all body-diffracted and multiple-scattered waves are ignored.

The structure factor is:

-^

F()- e dA(r ) (40)

The distribution function is:

Mi

U(r) = 0 0[-4l1 'n] [ 2 "nm] (41)
m=l

where O(x) = 1, x>O; O(x) = 0 x<O (42)

and "m" denotes the various analytic surfaces of the target. Hence,

equation (41) states that only those surfaces observable from both the

source and detector are of significance. We may confine our investiga-

tion to the x-z quadrant of Figure 5, because of symmetry. Further, we

require k2 to be coplanar with k1 and the cylinder axis. This imposes

some restriction on the generality of our solution. Equation (41) is

nonzero for S and one half the curved side surface (S2) of the cylinder.

We may write:

F( ) = FS () + FS2( 1 (43)

1 2

where FS and FS are the structure factors -of the end disc and

hemi-cylinder respectively. Each structure factor may be evaluated

separately and summed to produce the total F( ).

CYLINDER END DISC STRUCTURE FACTOR

For the end disc:

24
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f ) = y n i** dA (r)" (43)
1 1,

Now from Figure 6, we see that:

r = Z + x (44)

and, dA(r) 2ydx 2(a2-x2)k dx (45)

Thus,

+a i(k x+k z)

F tk) f f 6(z-L) 2(a2-x2)1k ( e x Z dxdz . (46)

1 z -a t
A A

Note, from Figure 5, i'n = 'z = kz for the surface SI.

Thus equation (46) can be integrated over dz and simplified to:

kL
2k i- +a ikx)S 2 2-2

e f (a2-x2) e dx. (47)
1 J -a

The integral in equation (47) can be simplified as shown below.

+a ikx a
(a2-x2)ke x dx = 2 f (a2-x2) cos(kx)dx. (48)

-a o

Let, t- -' x =O t=O; x=a t=l.

a a

Thus the integral becomes:

1

2a2 f (l-t2)kcos[(kxa)t]dt. (49)
-o

The integral (49) is a form of the first order Bessel function.
18

Thus,

'5Abramowitz, M. and Stegun, I. A., Handbook of Mathematical Functions,
Dover Publication, Inc., New York, 1965.

(Text Continued on Page 27)
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FIGURE 6. CYLINDER END DISC (S )
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ikzL/2 k Jl(kxa)
FS() (2na2 e z zl x

where Jl(kxa) is a first-order Bessel f-tnction,

J W (.kz2)n

J(Z) = (z) (n+2)n=O

and "F" is the gamma function.

CYLINDER SIDE SURFACE STRUCTURE FACTOR

In order to evaluate the structure factor for the heini-cylinder,
-* 44 4 4

consider the diagram in Figure 7. Note that r p+z and p x+y. Now

the unit normal to the surface is:

A 4 441

n 2= t-I
a a

Thus,

^ +. kxX
.n _. + y (51)

44 4
since k-y = 0 because k lies in the x-z plane (see above). The dif-

ferential area element in Figure 7 can be written as:

dA ad~dz

- adxdz (for a>x>O) (52a)

(a2-x2)

adxdz
or = +-dd (for O<x<a) (52b)a2- 2 ")-k-

The two forms of equation (52) are needed for the positive and negative
values of "y."1 Thus, we may write:

27
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Now,

+L/2 i z ik zL/2 -ik zL/2

f e z dz e -e
-L/2 ikz

kL

2

Thus,

kL
2k L sin(-- a xxFS X e dx]. (55)

(Z fo (a-x2)

To evaluate the integral remaining in equation (55) we make the
substitutions,

t ; dt L; x 0 t 0; x =a + t 1.

Therefore,

A ikx i(kxa)ta x 1I

f xe dx a f t dt. (56)
o (a x ) o (l-t2)

We now integrate by parts using the following identifications:

i(ka) t i (ka) t

u e ; du i(k a)e dt (57a)

dv = tdt V (-2) 5b

(1-t2);

Thus,

1 teikxat ikxat 1 1 ikxatf e 2)__ X (l-t2) e x
f dt -(l-t 2)e + i(kxa)f e dto (l-t2) 0o
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1 lt) ikxat

= 1 + ikxa f (l-t2)k e x dt. (58)
0

In order to identify the integral in equation (58), we write it in the
following form:

1 ikat 1
f (l't2) % e dt = (l-t2) cos[(k a)t]dt
0 0

+ 1 t2) sin [(kxa)t]dt . (59)
0

The first integral on the RHS of equation (59) is a form of the first-

order Bessel function1 8 (see also equation (49)) while the second inte-

gral on the RHS of equation (59) is a form of the first-order Struve

function 18 , H1 (z), where:

Hi(z) = ( Z)2 0 (_l)n ( Z)2n  (60)
1 F(n+3/2) F(n+5/2)6n=0

where F is the gamma function.

Equation (58) now can be put in the form:

1 teikxat  a( F(3/2) ,k( Jl(ka)
f (l-t2) dt 1-kxa, k a Hl(kxa) + ikxa( a 1 )

0x x

[1- Hl(kxa)] + i["Jl(kxa)] (61

Using equations (56) and (61) in equation (55) we find:

k zLk sin( -- ) 2_

FS2( ) = aL( -I)[ .[(G-Hl(kxa))+ 0l(k xa) ]  (62)
S2 M~ (kL n1

2

1 8 ibid
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COMBINED STRUCTURE FACTOR

In order to combine F ( ) with F (), we rewrite the exponential

factor in equation (50),

kL

1- kL kL

e cos + i sin (I) . (63)

Equation (50) then becomes:

k Jl(kxa) k L kzL

FS = 2a(ka) (z) + i sin zkA (64)

Combining equations (62) and (64) yields:

= FSI + FS 2(M

2ia 2k k L 2naLkx  k L 2_ Z Z.Cos (-L-)Jl(kxa) +- - sin ( R)[j-Hl(kxa)])
J kxa  2 Jlkz 2

2na 2k k L 271aLk k L
+ i{ 4 z sin (-K-)Jl(kxa) + X sin Ji(kxa)()

Thus, the total structure factor, to this first level approximation, for

the rigid, right circular cylinder is:

F() 2ia k k L k k L2
4 -- cos((ka) xi) + sin

x z

k kx  kL .1
+ i {(1 + F-) sin(---) Jl(kxa)} (66)

xk z

where Jl(k a) is first-order Bessel function and Hl(kxa) is a first-

order Struve function defined in series form by equations (50a) and

(60), respectively.
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SECTION VI

RIGID CYLINDER SCATTERING CROSS SECTION

The structure factor, equation (66), is valid for both bistatic

scattering and backscattering, to the level of approximation indicated

by equations (41) and (42), as long as k1 , k2 , and the cylinder axis are

coplanar. The nature of the structure factor can be examined by plotting

the dimensionless scattering cross-section, Q:

O(C) [t'F()]2 (67)

where = lla. The dimensionless parameter is proportional to the

ratio of the nominal target dimension (in this case, the cylinder radius

"a") to the wavelength of the acoustic waves used to provide the scattering

information. Hence, a particular value of Q(C) is representative of a

large target at low frequency or a small target at high frequency when

similar scaling factors are applied to the target dimension and wavelength.

A three-dimensional plot in wave space of the scattering cross-section

for a rigid cylinder whose radius to length ratio is 6 is shown in

Figure 8. The ordinate ij Figure 8, Q(t), is measured in decibels

relative to the maximum value in the plot. The C axis corresponds toz
the end-on aspect of the cylinder while the C axis is the broadside

response. Only one quadrant of the function Q(t) is shown since the

others are similar by reason of symmetry. A shaded contour plot of Q(t)

showing all four quadrants is shown in Figure 9. Generally speaking,

the darker the region in Figure 9, the larger the Q(t) value. However,

caution should be exercised when interpreting Figure 9- since it is a

black and white reproduction of a color-coded display.

(Text Continued on Page 35)
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FIGURE 9. SHADED CONTOUR PLOT SHOWING THE FOUR QUADRANTS OF

THE RIGID CYLINDER SCATTERING CROSS- SECTION
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When interpreting either Figure 8 or Figure 9, one should imagine

that the target is located at the origin of coordinates of each plot

with the cylinder axis oriented along the C axis. The response which
z

would be observed in a given backscattering situation can be found by

drawing a radial line from the origin of the plot in the direction

corresponding to the target viewing or aspect angle. The appropriate

response is located on this line at a distance from the origin cor-

responding to 4n times the ratio of the radius "a" to the wavelength

"X." Thus, the responses for higher frequencies are located at larger

radial distances from the origin. The maximum values of = 47T(a/X)

shown in Figures 8 and 9 is 25.

A few comments on the interpretation of Figure 8 are worthwhile.

First, the scattering cross-section increases monotonically with frequency

for constant values of the structure factor. F(C). In a linear plot,

this increase would be quadratic. It arises because of the factor C2 in

Q(). This increase can be seen along the CZ axis of Figure 8 where
F(C) is constant. The C2 factor is a part of the definition of scattering

cross-section since Q(C) conventionally is defined in terms of energy

scattered into a given solid angle. In order to compensate for the

spherical spreading of the energy of a scattered wavefield (remember,

since (r) is proportional to F(), or in terms of our dimensionless

parameter F(C), the energy density F2(C) must be multiplied by a factor

proportional to the area of a sphere in wavespace, i.e., the radius

squared, 2)

Second, the ripple contours whose variation is parallel to the Cx
axis (i.e., those peaks and troughs which are parallel to Cz arise pre-

dominately from the end disc of the cylinder. The spacing of the peaks

and troughs in the Cx direction is an inverse function of the diameter

of the end disc. 'The larger the diameter, the smaller the spacing.

This can be compared to the more rapid fluctuations or smaller spacing

between the peaks and troughs along the Cz direction which arise from

the length of the cylinder.
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Third, the scattering cross-section and its slope are zero at the

origin. This is more easily seen in Figure 10 which corresponds to

Figure 8 from a different viewing angle. Figure 10a is a logarithmic

plot (in dB) while Figure l0b is a linear plot of the region neat the

origin which shows the zero value of the scattering cross-section and

its slope. The region nearest the origin in wave space is known as the

Rayleigh region. The scattering cross-section in this region increases

approximately as the fourth power of the argument t. The rate of increase

is related to the volume of the target. In our empirical model, it

represents the "first moment" of the inclination factor. Consider the

general expression for the structure factor, equation (40), for small

values of the argument

4

F( 40) =' ir dA(-)

I ~I

f=(-r)[k'n][l+iA-r] dA(4) (68)

Thus

A A

F( Ja0) = t(-)[f'nr dA(4) + i a([) -'nl dA(4) (69)

For a(l) = 1, the first integral in equation (69) is a constant equal to

the average value of the inclination factor. The second integral is

proportional to , and, because of the r factor in r-, represents

what might be called the first moment of the inclination factor. There-

fore, equation (69) can be written as:

F( =0) C0 + CllI -(70)

I,

(Text Continued on Page 39)
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FIGURE 10a. ALTERNATE VIEW OF THE RIGID CYLINDER SCATTERING
CROSS- SECTION (LOGARITHMIC ORDINATE)
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FIGURE lOb. LINEAR PLOT SHOWING THE RAYLEIGH REGION OF

THE RIGID CYLINDER SCATTERING CROSS-SECTION
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where C0 is the zeroth moment or average value of the inclination factor

and C1 is the first moment. It can be argued that C1>>C 0 since the

moment arms are roughly equal to the average target-center to target-

surface distance (compare, for example, the area of a spherical shell to

the first moment of the area of a spherical shell). Thus,

[F(t4O)]2 = C2 + + (71)

or in terms of the dimensionless parameter C:

[F(C40)] 2 = C2 + 2C0CiC + C
2

. (72)

Therefore,

= + 2CoClC3 + . (73)

From equation (73) we can see chat the amplitude and slope of Q(C) at

the origin are zero. For small values of the argument C, the behavior

of Q(t) goes approximately as the fourth power of t because of the

dominance of CI over CO.

For cases where a(r) t 1, our analysis obviously must be modified.

For example, if u(r) can be approximated by a power series in "r," then

the constants in equation (70) are the zeroth and first moments of the

factor composed of the product u(r) and the inclination factor.

Returning to Figure 8, we note that except for the periodicity of

the crests and troughs in the C and Cx directions and the behavior of(O) near the origin, there are few, if any, features of interest in the.

scattering cross section of the rigid, finite cylinder. This raises a

subtle but important point. The plots, Figures 8 and 9, of the scat-

tering cross section permit one, at a single glance, to note any signifi-
cant features which might be of use in target classification. If features

are present, their variation as a function of frequency and target
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aspect can be noted easily. The probability that significant features

are present for real targets appears high based upon results published

in the literature.3'5 As we will see in Section VIII, incorporating

impedance boundary conditions into our model is sufficient to produce

interesting and significant features in the scattering cross-section of

the finite cylinder. A collection of plots similar to Figure 8, but for

a class of targets of interest, could be quite useful in the design of a

sonar whose parameters (such as bandwidth and center frequency) are

selected in order to optimize target classification or detection.

3ibid

Sibid
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SECTION VII

IMPEDANCE BOUNDARY CONDITION

GENERAL CONSIDERATIONS

In order to develop a second level approximation to the model,

one which incorporates the acoustic impedance properties of the target

surface, let us consider the boundary conditions. Brekhovskikh1 9 has

derived reflection and refraction coefficients for the case of a compres-

sional plane wave in a fluid medium incident upon an infinite, plane,

solid surface by solving the boundary value problem. The geometry and

-parameters are shown in Figure 11. The densities and wave speeds in the

two media are indicated in the diagram. As Brekhovskikh shows, the

incident, reflected, and refracted wave vectors all lie in a common

plane (the X-Z plane in Figure 11) as a consequence of the boundary

conditions. For an incident wave of unit amplitude, the complex ampli-

tude of the wave reflected back into the fluid medium is:
19

ZD cos 2(20E) + ZE sin 2(20E) - ZB
SZD cosz( 26E) + ZE sin2(26E) + ZB (74)

where

PFCF PsCD PSCE

B cosB ZD= cos D  ZE Cos 54 BD E

where the parameters are specified in Figure 11.

19Brekhovskikh, L. M., Waves in Layered Media, Academic Press, New York,
1960.

[(Text Continued on Page 43)
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FU Density Z A

CF - Compressional .-
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FIGURE 11. A COMPRESSIONAL PLANE WAVE, kA, IN A FLUID HALF SPACE

IS REFLECTED FROM A FLUID-SOLID INTERFACE INTO THE

DIRECTION kB AND REFRACTED INTO THE SOLID HALF SPACE

IN THE FORM OF A COMPRESSIONAL WAVE, kD' AND A SHEAR
WAVE, "kE
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The incident angle, 0A' and reflection angle, 0B, are equal while

the refraction angles are found from a Snell's Law relation to be:

D sini in_a=in- CF- sin 0A (76)
F A]

and

CE

8E sin- sin A]. (77)

The reflection coefficient, u, in equation (74) is a plane wave

approximation and hence will fit nicely into the empirical model as a

surface distribution coefficient to be used with the inclination factor.

This will permit a second level approximation for scattering from a

finite cylinder providing the form of equation (74) can be modified to

correspond to the parameters used for expressing the structure factor,

equation (40). The only parameter 1- equation (74) which must be expressed

in wave-space and real-space parameters is 0A, the incidence angle,

since GB = 0A and D and 
0E may be derived via equations (76) and (77).

The angle of incidence, for a specific differential area element, can be

found by considering the inclination factor and by referring to Figure 4.

A

= kn = cos GA (78)

where GA is the angle of incidence and f is the normal to the differen-

tial area element. Equation (78) applies equally to the hemi-cylinder

surface as well as the end disc. The form of a is different, however,

for the end disc versus the hemi-cylinder when expressed in wave space

and real space parameters because of the difference in orientation of

the surfaces with respect to a given 1 direction.
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END DISC REFLECTION COEFFICIENT

Referring to Figure 5, the end disc, S1 , is a planar surface.

Thus, the unit normals for all differential area elements point in the

same direction. This means that the reflection coefficient, equation

(74), is independent of the integration variable and can be taken outside

the integral of equation (40), i.e.;

( ) ~s I  n i '

F Uf - e dAl() (79)

The form of uI for the end plate will be derived for the back-

scattering case only. The bistatic case has been investigated qualita-

tively and appears to be different. The implication of this difference

appears contrary to the principle of reciprocity but is still under

consideration.

For the end disc:

-> k'n _ z
Cos 8 (80)

Recalling the restriction, described earlier, that both and

are coplanar with the cylinder axis (hence, they define the kz-k x plane),

we know that:

I I2 = k2 + k2  (81)

Therefore,

sin A [1- cos2 0 A
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k
=[1- (T )21]-

k
x (82)

Equation (82) can be used with equations (76) and (77) and familiar

trigonometric double angle formulae to specify all the parameters in

equation (40) for the reflection coefficient. The results are listed

below.

z PFCF V (83)

ZBI - sD1 ~X I(4

B k z

z I P D1 CF Dix(l4

CFIiZ E1 = sC EI1  (- CF Mk (85)

2C k CEksin2(20E1 _ E x )2 [1 - X 2)]86

E1 CF Mk CF'
"CF(2 1 2(- (87)

Ckcos 2 (20El) = [1 - 2( )2]2 •(87)

F

Equations (83)-(87) may be substituted into equation (74) to produce the

reflection coefficient, O,' for the cylinder end disc. The second level

approximation for the end disc structure factor is found using equation

(50):
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FS( ) = (a )(2na 2e A Z . (88)

HEMI-CYLINDER REFLECTION COEFFICIENT

The case of the hemi-cylinder reflection coefficient is more

difficult because o2 depends upon the integration variable. Recalling

the cylinder orientation and the parameters shown in Figures 5 and 7, it

is obvious that the inclination factor varies along the arc length

curvature but not in the direction of the cylinder or z-axis. Hence, we

pick a representative point, P, on the hemi-cylinder surface to be in

the X-Y plane as shown in Figure 12.

The angle between the scattering vector, i, and the unit normal, n,

as specified in equation (78), is 0A as shown in Figure 12. However,

the wave-space and real-space parameters kx, kz, x, and z can be expressed

directly in terms of the integration angle, *, and the angle 01 in

Figure 12.

-n cos 0 (89)

But from spherical trigonometry we have the relation:

cos A = cos cos 01. (90)

From Figure 12, we see that:

cos = (90a)
a

(Text Continued on Page 48)
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FIGURE 12. RELATIONSHIP BETWEEN THE SCATTERING VECTOR k
AND TIHE VECTOR (A) NORAL TO TIHE IHEMI-CYLINDER

! " SURFACE AT THE PO IN P(x ,y ,o)
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and
kcos o i . (90b)

1

Thus,

kxx
Cos 8A  (91)

Mk a

Equation (91) may be used with equations (76) and (77) and the double

angle formulae to provide expressions similar to equations (83)-(87) for

the cylinder side surface. The results are:

PFCFI. a

Z2 (92)

ZD2 = PsCD {I-(CD)2 k x
B2 k

ZE2 PSCE {i.(-)2 k x
D D1(. 2 } -  (94

2 F I Ia

sin2 (2OE2 = (J) 2 [-( X )2] - (95)

2 F Jkia F I~a

and

c~s22%E2 = {_2(C E)2 k x
CosEE x) (96)

2 F jla

for the curved side surface of the cylinder.
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HEMI-CYLINDER STRUCTURE FACTOR

The structure factor for the hemi-cylinder surface, S2,may be
written by modifying equation (55) to include the reflection coefficient,

f2(x), for the side surface:

k L ikx( _ 2kL sin (---) a a 2 (x) xe

F2 II []kL ][f 2-X2)- dx] (97)

2

where a 2 (x) is given by equation (74) with the aid of equations (92)-(96).

Equation (97) must be evaluated by numerical integration.

COMPLEX VALUES OF THE REFLECTION COEFFICIENTS

The reflection coefficients ui and o2 (x) in equations (88) and r
(97), in general, are complex. For incident angles 0A, in equations (76)

and (77), which are less than the critical angle for compressional and

shear waves, i.e.,

sin [_CC sin 6A] < 1 (98)C F,E  A

the reflection coefficients are real. For 8A greater than either critical

angle, the reflection coefficients are complex; i.e., real plus imaginary.

In order to evaluate the reflection coefficients in these complex domains,

the refraction angles, 0D and 0E, were expressed in terms of complex

components:

8. = yj + i Pj , j B or E. (99)
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Thus, the Snell's law relations, equations (76) and (77), take the form:

C.

sin 0. = sin yj = - sin 0 (100)C CF A

(for y. < i/2; = 0)
j-

and

C.
sin 0. = cosh =- I sin A  (1.01)

SF A

(for yj = n/2; Oj > 0)

The relations to be used in the reflection coefficient for 
0A greater

than the critical angle are:

Z. = -ip.C.(sinh wj 1  (102) f

sin 2 (208) = - sinh2 (2pj) , (103)

and

cos 2 (20.) = cosh 2 (2Pj) , (104)

where

~C.
= Icosh-1  C* sin OA] (105)

F A

The reflection coefficient, a, in equation (74) depends upon the

densities of the fluid and solid ( and pS), the compressional wave

speed in the fluid (CF), and the compressional and shear wave speeds (CD

and CE) in the solid, as well as the angle of incidence, A The moduli

and phase angles of the reflection coefficients for brass and aluminum

planar surfaces in water are shown in Figures 13 and 14, respectively.

The modulus and phase for an aluminum surface in air are shown in Figure 15.
50 (Text Continued on Page 54)
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(a) Modulus
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FIGURE 13. REFLECTION COEFFICIENT (a) MODULUS, AND (b)
PHASE ANGLE FOR BRASS IN WATER
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(a) Modulus
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1.0- (a) Modulus
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FIGURE 15. REFLECTION COEFFICIENT (a) MODULUS, AND (b)
PHASE ANGLE FOR ALUMINUM IN AIR
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The moduli for brass and aluminum in water are similar in character.

Each has a small cusp at the critical angle for compressional waves in

the solid, followed by a shallow trough which rises to unity at the cri-

tical angle for shear waves in the solid. Phase angle plots are for the

absolute value of the phase angle. Hence, the large cusps in the phase

angle plots are artifacts which arise from the folding of values in the

range 180 degrees - 360 degrees back into the range 180 degrees - 0

degrees about the 180 degree line. The smaller bumps in the phase angle

plots occur at the compressional critical angle while the nearly 360

degree phase shifts (large artifact cusps) occur at the critical angle

for shear waves.

The aluminum plane in air, Figure 15. is characterized by a reflec-

tion coefficient whose modulus is unity for all incidence angles and

whose phase is essentially zero everywhere. This could be anticipated

since the ratio of the densities of the two media is so large. Thus,

the case of aluminum in air should approximate, very closely, a rigid

scatterer. Indeed, this case was used to test the algorithm for com-

puting the scattering from an elastic cylinder via the reflection

coefficients as outlined previously. The results are presented in the

next section.
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SECTION VIII

IMPEDANCE CYLINDER SCATTERING CROSS SECTION

The boundary conditions discussed in Section VII can be expected to

affect the dimensionless scattering cross-section, Q(t), for a finite

cylinder providing the densities and wave speeds in the two media are

sufficiently different. Variations in Q(t) due to the scattering ampli-

tude can be expected to be moderate when no dramatic variation is observed

in the modulus of the reflection coefficient (See Figures 13a and 14a

for brass and aluminum in water). However, the phase variations which

occur at the critical angles for compressional and shear waves can be

expected to have a dra.natic impact since they affect the manner in which

two or more scattered waves interfere. This hypothesis suggests that

the shear critical angle will be the dominant parameter because of the

abrupt 27t phase shift. This is consistent with Hickling's2 results

which indicate that the spacing between peaks in the experimental fre-

quency response for elastic spheres is most strongly correlated with the

shear wave speed.

The scattering cross-section for a finite, elastic cylinder with a

length to radius ratio of 6 was calculated using the end disc and hemi-

cylinder structure factors given by equations (88) and (97). Evaluation

of the integral in equation (97) was accomplished by numerical methods.

Three examples were investigated. First, Q(C) was calculated for

an aluminum cylinder in air. The parameters were the same as those

specified in Figure 15. The purpose of this example was to test the

computer algorithm. In principal. the results should be the same as

those for the rigid cylinder. Comparison of the scattering cross-

section for the aluminum cylinder in air, Figure 16, with that of the

rigid cylinder, Figure 8, indicates that this is, indeed, the case.

(Text Continued on Page 57)
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FIGURE 16. SCATTERING CROSS-SECTION FOR AN

ALUM~INUM CYLINDER IN AIR
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The scattering cross-section for the aluminum cylinder in water was

calculated using the parameters given in Figure 14. A three-dimensional

plot of O(C) is shown in Figure 17. A second plot, shown in Figure 18,

has been rotated 1800 from that shown in the previous figure. A black

and white contour plot showing all four quadrants is given in Figure 19.

Several significant features are clearly visible in Figure 17. First, a

single broad trough extends from 1 10 outward at approximately 30x
degrees from the Cx axis. This corresponds to the critical angle for

shear waves with respect to the side surface of the cylinder. The

breadth of the trough is believed to be due to the variation of the

shear critical angle caused by the curvature of the side surface.

A much more subtle effect is observed for the cylinder end disc. A

faint ridgeline can be seen running from near the origin diagonally

across the maximum which is parallel to the C axis. This ridgeline is

approximately 15 degrees from the Cz axis. It arises from the small,

sharp peak in the reflectivity curve, Figure 14a, which corresponds to

the critical angle for compressional waves in aluminum. No broad minimum

at the critical angle (30 degrees) for shear waves into the end disc is

apparent. Presumably this is absent for two reasons: (1) the critical

angle is sharp; (2) all points on the surface of the end disc pass

through the critical angle simultaneously so that no new destructive or

constructive interference occurs between various parts of the end disc.

Since the critical angles for the end disc and the curved side surface

do not overlap, no significant cross interference between the contribu-

tions of these two components is manifested. That is, because the

amplitude of one component is small in the vicinity of the shear critical

angle of the other component, intensity fluctuations caused by cross

* interference are very small.

Another subtle feature in the scattering cross-section for aluminum

in water is the shallow, broad minimum in the ridgeline along the x

(Text Continued on Page 61)
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FIGURE 19. SHADED CONTOUR PLOT OF TIE SCATTERING CROSS-
SECTION FOR AN ALUMINUM CYLINDER IN WATER
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axis. It is believed that this minimum is coupled to the flat region at

30 degrees arising from shear wave effects and that it will show oscilla-

Lory behavior with a complementing flat region when the scattering

cross-section is computed to larger values for Cx than those shown in

Figure 17. One final point can be made. Since the approximation utilized

for these calculations does not take into account energy which penetrates

the surface and is scattered out again, the region in Figure 17 from 30

degrees to 60 degrees, measured from the C axis, is beyond the critical

angles for both the end disc and all portions of the curved side surface.

Thus, the response in this region should be the same as that for the

rigid cylinder. Comparison of Figures 17 and 8 confirms this. Inspec-

tion of Figures 18 and 19 reveals no additional features of interest for

the aluminum cylinder in water. However, these additional respresenta-

tions do help to clarify points already described.

The scattering cross-section for a brass cylinder in water is

presented in Figures 20, 21, and 22. The parameters used in the evalua-

tion were the same as those shown in Figure 13a. In contrast to aluminum,
the shear critical angle for brass is approximately 45 degrees. Hence

one might anticipate that there would be strong cross interference

effects. The spotty minimum which runs at 45° to the C axis in Figure 20

is believed to arise from this cross interference between the end disc

and hemi-cylinder.

There is only a faint hint of a ridgeline arising from the peak in

the reflectivity curve at 21 degrees to the end disc near the origin in

Figure 20. This diminished effect is in agreement with the difference

in the veflectivity peaks in Figures 13a and 14a. The beginning of a

broad, fiat minimum at the bottom right of Figure 20 also is apparent.

It is believed that this is the second oscillation of shear effects

mentioned earlier with regard to Figure 17.

Although the scattering cross-sections presented in this section

are not expected to describe experimental data accurately, they do

represent an improvement over the rigid cylinder approximation.

(Text Continued on Page 65)
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FIGURE 21. ALTERNATE VIEW OF THE SCATTERING CROSS-SECTION
FOR A BRASS CYLINDER IN WATER
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FIGURE 22. SHADED CONTOUR PLOT OF THE SCATTERING

CROSS-SECTION FOR A BRASS CYLINDER IN WATER
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Additionally, they dramatize the significance of the role of the boundary

conditions in determining the nature of the scattering cross-section of

any target. This may be fortuitous if a simple set of target indicators

is sought which emphasizes universal boundary effects. On the obher

hand, if geometry indicators are sought, it may represent a severe

complexity.

t
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SECTION IX

SUMMARY AND CONCLUSIONS

Starting from the wave equation, an empirical plane wave model for

acoustic target scattering has been developed. The model employs plane

waves and represents the total scattered field as a sum of contributing

effects called structure factors. The principal benefit of this model

is that it provides a formalism for simultaneously representing both the

frequency and the aspect dependence of the target response in terms of a

vector parameter in wave-space. The relationships between the wave-space

and real-space parameters have been described so that features ,2hich are

observed in the target's scattering cross-section in-wave-space can be

related to real-space parameters such as target geometry, orientation

and boundary conditions. This formalism can be utilized not only for

further refinements of the empirical model but also as a means for

graphically displaying experimental data. In this way, it is hoped that

interpretation of experimental measurements will be facilitated by

familiarity with similar displays of model results.

The model was applied to scattering from a right circular cylinder

of finite length. This cylinder is of interest because it is a mine-like

target and because it has a non-analytic surface; that is, it has sharp

edges. It is these edges which make empirical modeling a viable approach

to the acoustic scattering problem because sophisticated theoretical

models break down when mathematical discontinuities are encountered. A

concise mathematical relation was derived for the structure factor for

the right circular cylinder with rigid boundary conditions. Elastic

boundary conditions were examined and incorporated into the model.

Because of the complexity of the mathematics for the elastic case, a

concise mathematical expression was not possible. Evaluation of the

structure factor for the cylinder with elastic boundary conditions

required a numerical integration by computer. One effect was to
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increase the computer computation time for evaluation of the scattering

cross-section by a factor of 32.

Comparison of the scattering cross-section for the cylinder with

different boundary conditions indicated dramatic differences. Although

no account yet has been taken of waves internally scattered within the

target, the results to date indicate that variations in boundary con-

ditions alone can produce markedly different scattering results for the

same target shape. When internal scattering is included, it is antici-

pated that these differences will increase rather than dissipate.
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